首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5655篇
  免费   618篇
  国内免费   663篇
  2023年   58篇
  2022年   107篇
  2021年   221篇
  2020年   217篇
  2019年   265篇
  2018年   229篇
  2017年   186篇
  2016年   270篇
  2015年   327篇
  2014年   449篇
  2013年   434篇
  2012年   502篇
  2011年   447篇
  2010年   293篇
  2009年   309篇
  2008年   364篇
  2007年   293篇
  2006年   288篇
  2005年   229篇
  2004年   241篇
  2003年   208篇
  2002年   195篇
  2001年   102篇
  2000年   88篇
  1999年   84篇
  1998年   71篇
  1997年   69篇
  1996年   45篇
  1995年   33篇
  1994年   26篇
  1993年   23篇
  1992年   46篇
  1991年   33篇
  1990年   20篇
  1989年   18篇
  1988年   11篇
  1987年   19篇
  1986年   5篇
  1985年   13篇
  1984年   12篇
  1981年   5篇
  1980年   6篇
  1979年   6篇
  1974年   4篇
  1970年   5篇
  1968年   8篇
  1967年   6篇
  1966年   7篇
  1965年   5篇
  1964年   4篇
排序方式: 共有6936条查询结果,搜索用时 15 毫秒
81.
82.
83.
84.
85.
Mesenchymal stem cells (MSCs) play an important role in chemoresistance. Exosomes have been reported to modify cellular phenotype and function by mediating cell-cell communication. In this study, we aimed to investigate whether exosomes derived from MSCs (MSC-exosomes) are involved in mediating the resistance to chemotherapy in gastric cancer and to explore the underlying molecular mechanism. We found that MSC-exosomes significantly induced the resistance of gastric cancer cells to 5-fluorouracil both in vivo and ex vivo. MSC-exosomes antagonized 5-fluorouracil-induced apoptosis and enhanced the expression of multi-drug resistance associated proteins, including MDR, MRP and LRP. Mechanistically, MSC-exosomes triggered the activation of calcium/calmodulin-dependent protein kinases (CaM-Ks) and Raf/MEK/ERK kinase cascade in gastric cancer cells. Blocking the CaM-Ks/Raf/MEK/ERK pathway inhibited the promoting role of MSC-exosomes in chemoresistance. Collectively, MSC-exosomes could induce drug resistance in gastric cancer cells by activating CaM-Ks/Raf/MEK/ERK pathway. Our findings suggest that MSC-exosomes have profound effects on modifying gastric cancer cells in the development of drug resistance. Targeting the interaction between MSC-exosomes and cancer cells may help improve the efficacy of chemotherapy in gastric cancer.  相似文献   
86.
In laboratory yeast strains with Sir2 and Fob1 function, wild-type NAD+ salvage is required for calorie restriction (CR) to extend replicative lifespan. CR does not significantly alter steady state levels of intracellular NAD+ metabolites. However, levels of Sir2 and Pnc1, two enzymes that sequentially convert NAD+ to nicotinic acid (NA), are up-regulated during CR. To test whether factors such as NA might be exported by glucose-restricted mother cells to survive later generations, we developed a replicative longevity paradigm in which mother cells are moved after 15 generations on defined media. The experiment reveals that CR mother cells lose the longevity benefit of CR when evacuated from their local environment to fresh CR media. Addition of NA or nicotinamide riboside (NR) allows a moved mother to maintain replicative longevity despite the move. Moreover, conditioned medium from CR-treated cells transmits the longevity benefit of CR to moved mother cells. Evidence suggests the existence of a longevity factor that is dialyzable but is neither NA nor NR, and indicates that Sir2 is not required for the longevity factor to be produced or to act. Data indicate that the benefit of glucose-restriction is transmitted from cell to cell in budding yeast, suggesting that glucose restriction may benefit neighboring cells and not only an individual cell.  相似文献   
87.

Background

Inflammation has a crucial role in renal interstitial fibrosis, which is the common pathway of chronic kidney diseases. Mefunidone (MFD) is a new compound which could effectively inhibit the proliferation of renal fibroblasts in vitro. However, the overall effect of Mefunidone in renal fibrosis remains unknown.

Methods

Sprague-Dawley rats were randomly divided intro 6 groups: sham operation, unilateral ureteral obstruction (UUO), UUO/Mefunidone (25, 50, 100mg/kg/day) and UUO/PFD (500mg/kg/day). The rats were sacrificed respectively on days 3, 7, and 14 after the operation. Tubulointerstitial injury index, interstitial collagen deposition, expression of fibronectin (FN), α-smooth muscle actin (α-SMA), type I and III collagen and the number of CD3+ and CD68+ cells were determined. The expressions of proinflammatory cytokines, p-ERK, p-IκB, and p-STAT3 were measured in human renal proximal tubular epithelial cells of HK-2 or macrophages.

Results

Mefunidone treatment significantly attenuated tubulointerstitial injury, interstitial collagen deposition, expression of FN, α-SMA, type I and III collagen in the obstructive kidneys, which correlated with significantly reduced the number of T cells and macrophages in the obstructive kidneys. Mechanistically, Mefunidone significantly inhibited tumor necrosis factor-α (TNF-α-) or lipopolysaccharide (LPS)-induced production of proinflammatory cytokines. This effect is possibly due to the inhibition of phosphorylation of ERK, IκB, and STAT3.

Conclusion

Mefunidone treatment attenuated tubulointerstitial fibrosis in a rat model of UUO, at least in part, through inhibition of inflammation.  相似文献   
88.
Substance dependence is a frequently observed comorbid disorder in schizophrenia, but little is known about genetic factors possibly shared between the two psychotic disorders. GABRB2, a schizophrenia candidate gene coding for GABAA receptor β2 subunit, is examined for possible association with heroin dependence in Han Chinese population. Four single nucleotide polymorphisms (SNPs) in GABRB2, namely rs6556547 (S1), rs1816071 (S3), rs18016072 (S5), and rs187269 (S29), previously associated with schizophrenia, were examined for their association with heroin dependence. Two additional SNPs, rs10051667 (S31) and rs967771 (S32), previously associated with alcohol dependence and bipolar disorder respectively, were also analyzed. The six SNPs were genotyped by direct sequencing of PCR amplicons of target regions for 564 heroin dependent individuals and 498 controls of Han Chinese origin. Interestingly, it was found that recombination between the haplotypes of all-derived-allele (H1; OR = 1.00) and all-ancestral-allele (H2; OR = 0.74) at S5-S29 junction generated two recombinants H3 (OR = 8.51) and H4 (OR = 5.58), both conferring high susceptibility to heroin dependence. Additional recombination between H2 and H3 haplotypes at S1-S3 junction resulted in a risk-conferring haplotype H5 (OR = 1.94x109). In contrast, recombination between H1 and H2 haplotypes at S3-S5 junction rescued the risk-conferring effect of recombination at S5-S29 junction, giving rise to the protective haplotype H6 (OR = 0.68). Risk-conferring effects of S1-S3 and S5-S29 crossovers and protective effects of S3-S5 crossover were seen in both pure heroin dependent and multiple substance dependence subgroups. In conclusion, significant association was found with haplotypes of the S1-S29 segment in GABRB2 for heroin dependence in Han Chinese population. Local recombination was an important determining factor for switching haplotypes between risk-conferring and protective statuses. The present study provide evidence for the schizophrenia candidate gene GABRB2 to play a role in heroin dependence, but replication of these findings is required.  相似文献   
89.
The signaling lymphocyte activation molecule (SLAM) family plays important roles in adaptive immune responses. Herein, we evaluated whether the SLAM family member 2B4 (CD244) plays a role in immune cell development, homeostasis and antibody responses. We found that the splenic cellularity in Cd244 -/- mice was significantly reduced due to a reduction in both CD4 T cells and follicular (Fo) B cells; whereas, the number of peritoneal cavity B cells was increased. These findings led us to examine whether 2B4 modulates B cell immune responses. When we examined T-dependent B cell responses, while there was no difference in the kinetics or magnitude of the antigen-specific IgM and IgG1 antibody response there was a reduction in bone marrow (BM) memory, but not plasma cells in Cd244 -/- mice. When we evaluated T-independent immune responses, we found that antigen-specific IgM and IgG3 were elevated in the serum following immunization. These data indicate that 2B4 dampens T-independent B cell responses due to a reduction in peritoneal cavity B cells, but has minimal impact on T-dependent B cell responses.  相似文献   
90.
The intrinsic mechanisms that promote the degeneration of retinal ganglion cells (RGCs) following the activation of N-Methyl-D-aspartic acid-type glutamate receptors (NMDARs) are unclear. In this study, we have investigated the role of downstream regulatory element antagonist modulator (DREAM) in NMDA-mediated degeneration of the retina. NMDA, phosphate-buffered saline (PBS), and MK801 were injected into the vitreous humor of C57BL/6 mice. At 12, 24, and 48 hours after injection, expression of DREAM in the retina was determined by immunohistochemistry, western blot analysis, and electrophoretic mobility-shift assay (EMSA). Apoptotic death of cells in the retina was determined by terminal deoxynucleotidyl transferace dUTP nick end labeling (TUNEL) assays. Degeneration of RGCs in cross sections and in whole mount retinas was determined by using antibodies against Tuj1 and Brn3a respectively. Degeneration of amacrine cells and bipolar cells was determined by using antibodies against calretinin and protein kinase C (PKC)-alpha respectively. DREAM was expressed constitutively in RGCs, amacrine cells, bipolar cells, as well as in the inner plexiform layer (IPL). NMDA promoted a progressive decrease in DREAM levels in all three cell types over time, and at 48 h after NMDA-treatment very low DREAM levels were evident in the IPL only. DREAM expression in retinal nuclear proteins was decreased progressively after NMDA-treatment, and correlated with its decreased binding to the c-fos-DRE oligonucleotides. A decrease in DREAM expression correlated significantly with apoptotic death of RGCs, amacrine cells and bipolar cells. Treatment of eyes with NMDA antagonist MK801, restored DREAM expression to almost normal levels in the retina, and significantly decreased NMDA-mediated apoptotic death of RGCs, amacrine cells, and bipolar cells. Results presented in this study show for the first time that down-regulation of DREAM promotes the degeneration of RGCs, amacrine cells, and bipolar cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号